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4 extent to which the céﬁservatioﬁ of energy ‘and mo'mentumcan"be' fulfilled:

correlates a large.amount of data. ' S Coe
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BLAST WAVE THEORY OF CRATER FORMATION

N ' ABSTRACT - - -

Anr Aanélytic formulation of the proflem of crater foi*maticm is presented,

A

] uf-.-mg the methods of, blast-wafve theory. The approximations on which this-

approach is based dre chiefly concerned w1th the self- similar, or progressmg—
Awaﬁv_e nature of ‘the solutwn, W1th the type. of state equatxc‘m used, and w1'ch the

These approxunatwns and the hm1tat1ons whmh they m‘xpose are reviewed,
n

parhcularly as apphed 4:0 the problem of shock propagauon in solids. Neglect"

of momentum consarvatlon ig’ shown £0 be 2a gaod approxzmatwn, but use of the

Mm-_Crz;unmsen equatmn of state is found to be largely mcompatl'ble with the -
~’assun.1ption ciwfv sihmilarity.‘ An- approxxmate nonsimilar solution for 1~npact-
generated shock prcpagatmn is derwed and d1Sp1ays excellent agre@ment with
'observed shock—-wav tf'ajectomes. " ‘

To dbmve a penetrauon law from any soluuon, sorne pomt in the trajectory

must. be chosen as the crater radms. The strong mﬂuence of tb‘s chmce on the

penef,ratmn law is dxscussed and it is ¢ argued that the targetustrength shouid

pla.y a role in its determmatwn. A simple chelce of thej “crater-—formation v

cr1t§:mon, relate_d tp ‘the intrinsjc shear strength of the target, is utilized in

conjunction with the nonsimilar solution, to derive a penetration law whick

Y " . . : - ) i
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BLAST. WAVE THL‘ORY OF CRATER FORMA"’ION

"

INT RODUCT ION

% . ’ . . s “

The. fluid-mechanical apprommatmn pwneered by BJOL‘kI is co.mmon&'
accepted as a proper descrlptwn of the early phases of target deformatkm

due to byperveloc ty 1mpact In such EY model, the motﬂon of any nm:t_ll mass

element is asysum‘ed to be governedhy the pressm:‘es acting on its faces, _

while resistance to shléatr deformation is noglected.' The differential equa--ons
that go\‘r’ern such‘inViéciq_l motion are the usual Eu_ler ec;luatioos-iogpxjes‘sing the
conservation of mass,: momeéntum,’ and 'ergergj‘, together with the equaﬁoh' of
state of the com—pres/si'ble medium. ')These difﬁez‘ential equo.tiox;s contain twWo

spatial vamables as well as the time, and the proble“; of solvu. hem 4% oX-

¥z P

remnely difficuit. To date, the orxly soluti‘qns that have‘, behn-repcr:ed are the
. 1,2 '

Lied

‘ nument:al results of Bjork.
7 The purpose of- thzs pa.per is to preseﬂt an appromma te analytu solution

of the same set of eguations, ’Pne solutwn is achieved by adapting the tech~

-

mquea of blasi»wave theory, ‘which has produced suc‘x rmh dividerds in the

study of various lngh energy fluic. 10\-. m"obiems. %43

: ""he' spirat af“tﬁc; “’

’approach is to sunphfy the analysw wherever possible bv mairmg € xtam

“ >

apprommatwns te the true physical sitaation.. We seek gencrzzhtv and sun«

. plicity in the results.. . Some exactness in spegifying defaiis of the problem

must, fcourse,‘be saérificed - ) T . - S

The blast ~wave theory has been developed over the year s, as a means

of descmbmg various hlgh -energy gas flows. In oro.er to apply such a theory

to the problem of cratermg by ‘h1gh-speed progectlles, Leach of its .appr—oxn.m,a-_r’

tions must be carefully exammed in this new context.

Tha most important approxxmatmns can be grouped into three main

- .

&
¢



BLAST-WAVE THEORY OF CRATER FORMATION

- el ~

o wgs;ies; first, those concerned with the ass’uniption of a self- similar
sz of solution, second, those associated with the equation pf sta‘ce of the
+=#iue, and third, those dealmg with the extent to w}nch global energy-

e '_.‘l”::::‘n‘?.?tu“'l ~-conservation c0'1d1t10ns can be satlsfled After a bricf re-

!

~u & the baStc fluid~ rnechamcal equatmns in Section 1, these three

w#2vries are discussed in detail in Sectmns 2, 3, and 4. Followmg this,

~

Sroteirns 7 oand 6 present two different apprommate solutxons for the time-

- %.s12rv =i the shock as it penetrates the target. Fmaliy, Section 7 takes up

“
'

“he guestion of cr&ter-s'ize‘ pred.ictibrx.
' v”fi‘:i}é as}suz%nptiori/o'f simi"iarity di sc\ussed in Section 2 suppoises that

the flow patter:; be}'}ihd the shack that advances into the target is alwa}:s

the same, if viewed on a ,scalev“ given by the depth to which‘thle' shoc‘k;ha;s :

penetrated at that instant. This approximation has the effect of su?ﬁress‘mg

time as an 'independent vé.riable‘, and confzfitutecﬁ a key mathematical sim-

plifica’cion At the same tlme, it 1mposes certain restrxctions t‘ne most

1mportant of Wthu ‘8 that only certain forms of the s’cate equatmn are per»—

m1tted Sectwn 3 discusses the extent to which the ?vi e~ Grunemen equatzon

= v

E approxlmates the pprrnitted form. It 1srfound that only the extrerpely hygh«

pressure states of a Mie~Grﬁneisen material fulfill the required form, and

[P

m that range the true equatmn of state can be replaced by a perfect gas Qf

o

»’constant spemﬁo heat ratlo. In eve13r 1mpact the shock ultlmately degu 81 -

3

ates to a stress wave, 80 that the hzgh pressures requxred for the perfect-

gas apprommation are- only achwved during a small portlon of the process,

'Thus, a reahahc dcscrxption of shock propagatxon in solids requlres a

solutwn which accvunts for the nonsmular nature of thc problem.



BLAST-WAVE THEORY OF CRATER FORMATION

To conserve the total energy and momentum of the impacting parficle,

the solution must allow for spatial variations in two dimensions, and con-

' sequently a set of partial differenltialf equations must be solved, Section 4

describes approximate solutiéns of thése equations along the axis of sym-
metrir,, and compa'xes thésé results with those obtained using only one spatiagl
variable, the distance from the impact point. ‘Solutions with only one spatial, »
cloord’mavte can conserve or;iy the total energy qf thé_ gystém, and are found to

be'pr.;lctically ilentical with the more complicated two-dimensional solutions,

J

A corollary of this finding is that the energy of the projectile is the more im-

. portant parameter, its momentum playing only a secondary role. .In Section 4,

the physical reasons for this hehavior are described, and its implications on *

n 4
'

simul&«tion of hypex‘velocity impact-are discussed o : ‘

Sections 5 and 6 are devoted to a descrxptxon of the trajectory traced

out -by th- *ock as it propagates through the target ’I‘he classical Taylor o

solution for self-»mrmlax" motmn pf a shocx ?g).rough a perfect gas is reviewed

in Bection 5, With thi‘s as a backg;ound, iiveq fhen present in Section 6 an .
gpproximaté sdllﬁtion which :;.IIOWS /f-or the nonsimilar nature of shock 'propa‘ga~

t;’uon in solids, In this solutic;!}, the shock speed tends naturally to the stress-

wave 1imi£ at iarge‘ time. Cdmparisons with experimental,obsei‘vationsﬁin ‘
transparent targets, a;ld with Bjork's calculated A.shoc,k ;:rajectories, reveal ,

i N [

an excellent correlation over a wide range of conditions, This correlation

uses only the énergy of the projectile, and the density and stress-wave yélvocity—

. of the target, The fact that data up to an impact speed of 30 Km/sec are all

corrclated suggests that impact-generated shock propagation follows egsentially

the same mechanism over the entire speed range.

<
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K '1‘;> predict crater size, the solution for shock position as a fﬁnc;tiop
of tim;: is nét enough, Seg‘tionq'l points out that an auxiliaty criterion is
needed, to identify the point at which the crater will form.A The correlation |
presented hgré indicates thz;t theAchoiéel of this criterion is t*h'(e most import-
an? factor in determining the ultimate penetration law, In Séction 7, the
question of cﬁoosing a proper crater~forma€ion criterion is not settl;ad(,‘_"bu;c

several choices are discussed, One of these 1s shown to be capable of.

correlating a Izirge‘amouhtof data, thro gh proper selection of a certain

cqnétant. .

'fhe né@effebt of these studie}a has }‘oe‘en tojréve‘al' the potentialities and
u ’t}\xze iimitations of blast wave tfméory, as applied to c;‘é.ter formation in serni-
'kinfinrite ta;r,gets. Co§;§id'erable progress has been made, notably in establish-
ing the rélative unimi)ortanée o‘f momentum conservation, and m identifying
the nonsimilar nature of the problem, and its connection with the Mie-
Grt’im‘aise‘n séate equr;r.tiorlx.; At'the same t:ime, a great deal of work remaing
‘to be done in cei‘tain othe- areas, especiaﬁy in reghrd to; the formulation

of a suitable criterion for crater formation,



 BLAST-WAVE THEORY OF CRATER FORMATION

1. BASIC EQUATIONS

When a particle strxkes a target surfa.ce a.t high speed, large amounts
of energy and momentum are quickly Lransfprred te a very small portwn of
the surface, Cdnsequently, a strong shock wave is driven into the target,
generating extremely large ,pressuret;', ty’picaHQ measured in megabars,
Because these pressures-are so lgrgg <.:empé.red with the material strength
one is iéd to the ap‘proximation that the impacted medium behaves like an
inviscid, compressible fluid, In fact; the justification for vs;xc'h an approxima-
tion is not provided by the magnitude of the pressure themse}vus., but must |

come from a consideration of thexr gradtents. Consider a small mass slement
T+ 53 - "'Age

g | N g
£ ' w/,»fg;m

g

’ . . . ’ -
The net force acting in ’che x’—direction is pronortional to ,32';' - gf ; thus
the neglect of resistance to shear deforma%m,z reqmreb 32 » ;;: . To
replace this comparison of gradwnts by a simple comparison of pressure with

strength, is to assume that ratt‘s of change in the two perpendicular directions )
are of the same order, and-that the proper orders of magmtude to use for ?9
and g~ are the impact prqssure and wnaterial strgngth at high strain rates.
Tlmre appears to be no reason for d'oubti‘ng cither of these assumptions in’

the early stages of the impact proéess. Thﬁs the prcﬂslem bf determining the
respo;gse« of the target méteria,l becémés essentially that of solving the {luid-
mechanical equétion,‘s (c\:onks‘;e’rvation of mass, momentum and éncrgy) together

v

wiih the equation state of the medium -



BLAST-WAVE THEORY OF ‘CB.ATER FORMATIONV
Mass: o ’ . - L)
Lp Awvg =0
ot YPAVY

Momentum: S ‘ (<)

f%y‘gmz p=0 |

VEI‘!/J rgy: . -
D(p) . Da
= e Sl = O g O
(& Dt | S-S |
Equation of State: ‘ ' , " (4)

Here, /0 denotes the dev‘sit‘y, 19 the pressure, € the inter/nal enérgy per
unit mass, A the entr opy per umt mass, . a,nd ? the velomty vector. The

syrmbol //t is. the convective derwatwg’ - ' ' _ Y

E:%"'g" .,.7.4;7 S L s
in which 't is the time and ¥/ the gradxe nt operrator‘ It should be ﬁoted

that the assumption of an mvzsca.d ﬂmd has been made by settmg the mg;ht-n

hand side of Eq. (2) equal to zero. If shearing forces werée to affect tho mouorll,’
they would appear in this equation. Concn,stent with this apprommatmm energy
changés arising from viscous dissipation and heat condugtion are omitted from

¢

the energy equation. .In addition, eneryy c¢hanges duc to radiavion and chemical =

change are neglected. Tﬁii’s the conservation of'energy simply, stutes that for

- each elcment of mass, changes of mf(,rndl energy de ale balanced by chzmgeq

m the f10w~—work term ’f’df,ﬁ . Alternatwel /s this condition may be expressed ,
by stating that the entropy of a gwer MALY elcment does “ot change after it.

has been processzd by th shock
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Finally, it should iae noted that the use of an equati?n 6f staic implies -
the assumption of .thérmddynamié equilibrium, | |
X A
: It»is assix‘med that the, target motion is syfn,metr‘ié about an axis normal
" _ to the original t-a.xget surface. For such an axisymmetric flow, the s:alar

forms of the squations of motion in spherical coordinates are

1 : . ( %,y plane is the
A target surface}
A8 4 __Z |

' ff +0L,,§§ +—:‘;‘-f§£ +f(§—% +/;§-‘ —g—g: " %’f—‘- + —‘;—-C'Coﬁ‘é):c? (6)
B eSS R@ R fR)e 0

¢=FM>,/) S o

Here W and w denote the velocity components in the ¥- and @~ directions
respectively. Equations (6) to (10) constitute five relations for the quantities
/P s /O » & W and € . One can also work with the entropy, rather than the

internal energy, in which case the last two 'eciuation‘s are replaced by
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24 4 w4, - | (11)
a«g“‘"”‘ar”"r 3‘9‘—-0 . ’
- A=alpp , (12)

The boundary conditions hat apply at the shoc: wave, i,e, at = Es(et)
state that tho discontinuities in velcuty, pressure, denaxty, ‘etc., across the
wave are given by the Rankine-Hugonist relations, For a shock advancmg

into a medium at rest these are

Poths =2, (s~ a) ' (13
Bt s s
o = (it ’P)(’"’“”) e

In the analyéis of this paper, it is assumed that the shock wave is always

hemispherical in shape as it advances into the target. This assumption is

.«). . . ’7

) ) o -
based on observations of shock sha.pe in luciteé and in wax®>’ under hyper-

velocity impact conditions, Further verification comes from the nearly
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. hemispherical shape of the craters formed at high impact speed.

At this point, then, the flmci-mec}*amcal problem poseéd is the solutmn
‘ of Eqgs. {6) to (;Q),, whlch descr:be the motlon of an 1nv1sczd .compressible

fluid, behmd a hemlspharma.l shﬁ*k wave advancmg into a semi- mfmu:e '

target.

The rxéotion must be such that the boundary conditions (13} to (15) are satis- .

" fied a.t.:the shock, ‘while aiong the surface =/ (5) (whose location is unknown)

' the pre sguré and material density must vanish-

. ’ . The solutwn of such a beundary-»value problem is an extremely d1ff1cul'c
task, To date only numerzcal solutmns have been presented ! ’I‘he obgect of
the pr esent paper is to review the approx1ma tions of blast -wave th"eory and

then to app’ly them in an effort to derive an analyt;c aolutwn.

l\

O
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BLAST-WAVE THEORY OF CRA*:ER F/ORMATiONr
2. SIMILARITY ASSUMPTIQN AND ITS IMPLICATIONS

Mathematlcaliy spea&mg, the most 1mportant a.pprox1mat1on made in

the biast«wave theu;ry is the aqsumptmn tha,t the flow is seli-similar, 1 e,

the dxstrlbutmns of the various physicai quantities (such as pressure, dens**y,

ete, ) at each instant are taken tc ‘be the same when viewed on’ a scale de-

- fined by the shock radms at that instant. Thus each quant1ty, instead of

"depending separately on the-time and on the distance ¢ from the impact

point, -is assuméd to be a function only of the combination "\//'ﬁ st ‘This
reducticn. of the number oi mdependent var 1ab1es constltutes a significant sim-

pl £1ca.txon in the dlfferennal equatmns that must b e solved. The essence of

the sxmllarlty assumptxon is to suppress tune as an independent vamable. This

* is done by introducing the sumlarlty ‘caordinate

v = _r_ R “(16)
o @s‘({?)' “ ,

and by redefining the velocity components, pressure, density, and internal

energy by the dimensionless functions : h
wlne,t) = R (n6) Plrot) =,%‘/?:’ £u,6)
w(net) = R @ (4,6) ~ plns t) ,e, %(n o) an
| | T e(ret) A ?ﬁw) |

When thessa relations are subsgtituted into_mqs. {6) to (9)7 and derivatives w1th

‘respect to r ‘and T are replaced in terms’ of derivatives with- respect to

‘/z , one finds that all explicit time dependence can be suppressed from the

dnffm entu,l equatmns it one chooses

o po= At - ey
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‘Thus, ot of the whole set of solutions"of the basic equaiions, the siinilarity -

assumptum restricts us to that subset for which tlie 8hock radlus is pr0por«

_ tional to 'a power of the time. When this is done the basic equatwns become

o W gj_s
(4- YL)SW v 28 ‘P(zq

s
”l
N 2¢
.- -’-;T 95 + (cp»\'{) ‘g;é+% _.i>.

Py —i--“i‘f=o o)
28 V( L :
) 'w.,*(qs Y()Yl %2.._“ 9%. + Lo - D

m é

nwy 2@ |
.-," “’?4-(%4:)"% 2.2 {(¢n)3—q)—b ;;—’-;ffaéjzz)

Thg parameter /V .which apxaears her'e‘ié‘fc'n' the‘ moment unspecified.
After ehmmatwn of time as'an exphmt variable in the d1fferent1a1

' equatwns, the next step is to see if the boundary condumns are compauble

' with the sxmﬂarlty assumption. ‘At the shock (yz _..t '“'/ PE-ES .“-/z..)

equatwns (1 3), (14), (15) and (10) become .

‘if/’("e),["“ ¢(",)0>}=;1 - | 1 ) (23.)J

s

'_F(_,)-'Q> :' qg(l) 9} “’i“'}ejt;‘f | : . (24) .

o ?(l 6)—} %[/‘;ﬁ;‘?‘z +‘F(’ Q)M F0 9)] (za)

ész?’(l)e): {&[/oaésg;p(l;e))/oo .)&[,)9)] ’ J {26)

—4“-’ +2.-9“l + == ceﬁ@):—-ow 9

W
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The first three of these are mdependent of the tune if. the initial pressure
in ,the undmmrbed medmm./Po is small compared w1th/> lf , which is of

the ordeg_c"ofl the pressure being generated at the shock. This condition will.

certainly be met whenever the fluid-mechanical model is appropriate, Thus

the question of whether a sirﬁiiar.it:y solution is compatible with the bqund;,ry

coﬁditioﬁs‘cllépends solely on whether the form of the internal energy function
F‘: is such as to permit t;rle time dependence to be .,el{minat‘ed from’ Eq. (26).
Sedovlvo has pointed out that this can be done whenever’ the internal energ;{a

is of the form

where (jf)gg) is any function of the dencnty. For such a case, Eq {26) becomes

%ue) /%ve(l@)?[/’&b(’ 9)} - 0

and all explicit time qepen\dence is eliminated. Thus 3 gelf-similar solution

ig possible whenever the medium 6b‘eya the equation of state {(27). In this case,

% o)
.

= *FS"G") | 2 ,"(27; ~

the bound~~v values at the shock can be conveﬁiently found by solving Ecja. (23)- -

(?,5).1'01': @, , £, and- %& in terms of \-//

'P('ie)',

T 8) = £(,8) = - e o 29

70,9 = £ "4»(1,9)-]‘ -

When these relatiOns are substituted in Eq. (28), the result is an expressmn

whxch can be ‘solved for the dens1ty ratio at the shock

B
T b
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4[i- el _polpbue) @ ,

The fact that the density ratio is constant in the fundamental prerequisite for

similarity, The other qua,neiti‘es’.at the shock are found from Eqs. (29) and (3‘0).
From the point of view of ai)plication fo sho‘ckj propagation in solids, the

most ix'nportant’ impliéation of the similarity as sumptién is i;s restriction( to

sfaf‘e equations of a ;pec;al 'kind., In ;che nexf Section wé indicate the extent to

" which real materials ate described by such a spécial family of state equatiéns.
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(32) takes the form

“whete -

.
x

BLAST-WAVE THEORY OF CRATER FORMATION .

3, THE EQUATION OF »STA'I‘E, :

N

For most sohds the equation of state approrxatc in the range of pres~

11

sures generated during ~hypervelomty impact is uhe Mie- Grunelsen relation

' < (p) . ; (32_)
e(1a/> ec(,fo L,%i- s

where the subscript & denotes the cohesive contribution and where [~ is

the Crrune1sen constant, which depends weakly on /’ . The cohesive contribu~

tions can he found from measured shock wave data. Along ihe Hugéniot, Eq.

eu(}")*"e (}9 13“/(:’%?)? < () PR S ey

Subtra.ctmg this from Eq. {32) then gwes

¢ fPH (ID) -‘ - ‘ ‘ (34',)
PP -

The Mije- Grtmemen equation can be rearranged as - ’

= —f— - A f P | 35) .

e {0), o ) |

e - {:H»gp) ==

By companson thh Eq (27), it can be seen that only the leadmg term of

- & {p)‘ e

Fq. (35) can be accommuodated i in a self<similar soluhon'. ‘Such a solutxon

will therefore be valid only when the pressure is sufficiently high that A{/J)

~
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islzsgﬁall in co;nparisoh with the 'leadihg'term; In fact, Ievez"y impact will span
a tiﬁmc;in’;érval &uring whicil this apprqximatiox; fe,ils. " Furthermore, the
;nz.essﬁrezs at which A(/D) is too lerge to be nég}ee’ted-are nevertheless"sﬁ‘ffi—
ciently high that the compressibledhﬁd approximation is still well justified.
Thus the. cxm11ar1ty solutaon can describe only tﬁe ea.r’ly phases of the fluid-~
dy*n?mlc process A proper description at later ttmes zequn'es a nons1m11ar
solution wh1ch accounts for- t‘he presence of the term A(/g) . For the moment
we defer this somewhat more d1ff1cu1t problem, and examing what can be done
‘with the siinilarity solutmn 1tse11, keeping in mind that it will apply only to :the’
earlier stages. ’

s@hé of the theoreti:cai ane.ly:see :o‘f shock wawes_in solid medi,a12 use the

approximation that the state equat"moﬁ can be represented by that of a perfect

gas with constant specific-heajf'rai:io \0/ s namely

e = P _ ) euL 50/3) - 6.
C ey y—\)/o R
‘Fﬂ»rw ‘chvis‘case, Eq (31) reveals fhalf the density ratio at the: shock ﬁas tile
constant value- i K | g K o
lx Q = ﬁ, = Y"" '
"W’ ) Lo XA

The use of a perfect gés may be viewed as an appréximation to the leading-

R 2

term of the Mie-Gruneisen equation, if the Gruneisen factor /"(/0) " is re-~
placed by the constant value ¥-| . This approximation, with ‘( chosen in ‘
the range from 2 to 4, amounts to a high-pressure approximation to the Mie-

Gruneisen relation, and it mda'k‘es available all the .results of the extensive
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= i, e e

'functmn A(/;) does not become szgmﬁcant.

BLAST-WAVE THEORY OF CRATER FORMATION -

. liter‘ature dealing with blé;st waves in perfect gases. It should be borne in

i
mmd of course, that the similarity soluhon is not 11m1ted to the predu‘tlons

‘made w1th\a perfect gas model. The variation of [~ could be accounted for,

but is neglected as a matter of'conirenience Wheri’ the perfect-gas approxi-

e ma,txon 1s mac’(e, the energy equatmn becomes

oA

R R R IY

- In terms of the sxmllar functmns, this is

4

A eE D EE )

. In addition to this identification with the Mie{}rﬁneiser{ equation, a

‘ petfect gas, approxxmatmn ma.y also be exammed by seeing how accurateiy it

represents the 1sentropes of a given matenal Th1s is done in Reference 13

for the case of uﬂon, where Lt is shown that the approxxmatlon ox a constant {

-is -"atasfactory for descr1b1ng the high- pressu’*‘e sta*es Of iron as long as the

)

©

Sectwn 5 below gwes a de scr1ptxon of shock propagatxon due to hyper-

veloc1ty impact, based on the perfect- gas approxlmatmn throughoat. In

" Section 6, we present a solution which accounts for t;he mfluence ‘of the non-

similar term A(/ﬁ\ ‘in an: approximate way. In'addition, ‘Section 6 in~
dlca.tes work curr ently in pr ogress, whmh properly accounts for the I

nonsimilar effect,



BLA{)T-WAVE THEORY OF CRATER FORMATION
4, CONSERVATION OoF ENE‘RGY AND MOMLNTUM

The total energy and monientum of the system must be conserved, as
ma,y be conﬁvmed by formmg the proper volume integral of the vector equa-
tions of motion, Eqs. (l) to (3). The actual integrals, whose values‘mu‘st be
cc;nstant, may be derived as follows: Consider as the mass element a ring

of volume rdr dg + 2wy sin@. The total energy &£ and momentum [~ éi‘e

} R ) L : .
E -.:f j [e+i,’(u‘4.w‘*)] ./;. 2w v* sin & Jdr A6
[} [+
| | 1(9) o
= z“»/o fg’ f smej [ 3 (40 +6J ﬂ‘-’”’l A de
re) | '
P = fWJ’T (ucose oJ‘sm9> /) n r* sing cﬂﬁrd’é ,
o (41)

T o) = .,
= 21:?3:?, IQS f Smaf : (qb s G - s:nﬁ) ‘%1 Ay de
. ° - , 4
Here we ercounter a fundamental difficulty. If we are to have a self-similar.
solution, tﬁc differential equa,tions ;eqﬁire’ﬁswﬁt . However, a single Qalue
of. ¥ will not permit both of t!:;e relations above to i)e’independent of time.
. Counstancy of energy cua.n.'be achieved only with A/ = 2/5, while momentum con -
sexvéticm tequixg{éﬁ N =1/4, and in either case the parametér A is used to
ma.tcﬁ the quanﬁﬁy being conservéed. Thus it d.ppears at first glance that; a
satiﬂfactory solution c¢annot bo ach1evz,d undcr the assumption of 31m1lar1ty.
Reference 13 describes one method for overcoming this difficulty, The essence
of the iéea is that p/ is determined ﬁy a totally different conéiderat»ipn,_ and
a second free parameter is introduced in such a way that both Qonservatioﬁ

conditions may be satisfied simultaneously.
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BLAST-WAVE THEORY OF CRATER FORMATION

It is clear, of course, that any soluticn which hopas to satisfy both
conqervatmn conditions snmultaneously rnust make provision for mass ejec-
tion from the, expanding crater, Consequent]y, a solution which supposefa
that the flow is ox;e ~half of a s‘Jphe,rica,lly symmetric disturbance (1gnor1ng
variations inr'vche o - diréc{ion) cannot sétisf* momentum conservation, . O,n
the-other hand, such solutmns are consulerably simplexr than those which per-
mit variat}ons in the @ “direction. In the remainder of th1s Sectlon, we first
describé the symmetric solution, and then take up the quezs'cion of approximate
solutlons in which prov1sxon is made for mass ejection, An im‘poxtant’conclu-

sion emerges from the comparison of these two, namely, that the vastly

" simpler spherically-symmetric solution is for practﬁcal purposes identical

with the more ccamplicéted solution which allows for mass ejection..
When the flow is spheriéally symmetric, W~ and all derivatives with
respect to @ vanzigh, and the similarity equations become ordinary differen-

by a

tial equations. - Denoting the ordinary derivative with r¢ wect to ¥

"

, prime, these are

(b-0)' (¢ + z%)na B

_I=N, . Y 143)

-y LN . Yt L) =
z’,\,%‘»ﬁ(dﬂl)(w “57»#) o (44)

The parameter ‘( may be thought of as related to the Gruneisen constant, as
mentioned earlier. _These equations may be svlved explicitly for the deriva-

tives in the form
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, , o 2+¢ = ﬂ‘ﬁ(#’“ ) )
- .. e “\"'7 Rerae — ey Yl
_ - -
(#-0[(6-0" - sy ]

- () v X 2R L o L
l-;f-/q?(¢n)+—fn 2

1

(¢fﬂ)z~ éﬁ

r {(¢*n)['z.%ﬁ ﬂ%f‘} vt e

(¢- ) ~—-'"~ -

(47)

(F;‘-om Eqs.(’37),> (23)-(26). the boundary conditions at the shock can be found

as

$) = nf() YH 4/()? b”‘"' o (48)

Equations (45) to (48) (with /\/ = 2/5) were first presented by G. I, Ta.ylor14
who wdrked out a few numerical and approximate analytical solutions for 2{
réﬁginé from 1.2 to 1.67, the range appropriate for gases, Subsequently, an
analytic solufion (also with N =2/5) was published independently by J. L.
’I‘ayl‘ofl 5, Latter i6, and Sakuyrai1 7. Simultaneously with (;, I, Taylor's work,
Sedovm had also found this analytic solution, |

" The parameter /\/ muet be specified before solutions of thp se equations
can be found. It appeats that physically acceptable s‘e‘lutiOns exist only when

/\/ =2/5, a value which conserves the total energy, as noted above, When A/
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is taken to be d1fferent from 2/5, the solution exh1b1ts infinite slopes.
Reference 13 presents results typlcal of those found in the range .25 < N <, 4

when a solution of this sort is attempted. This nonexistence of symmetrw

‘solutions apparently explains the difficulty encountéred by Davids et all

attemptmg to find a spherically symmet.'ic solution for constant momnntum.'
In what follows, A/ is chosewn as 2/5. and the terms ”constant energy"
and "spherically symmetric" are used interchangeably in referring t5 the

splution. o

Solutions of these equations for" Y in the range frdm 2 to 20 are prééented

in Reference 13, Figures 1 and 2 show typlcal results, for the caqe& T "% L

and’ }/ 16, These figures d1sp1ay the. uqual feature that tlxe o ,; s%s,t =

off rather sharply behind the shock, mdwatmg that most of the s, « -

- s

i
4

{,«,‘» s

is concentrated near the shock, For Y 7, a cavity begins to fo*

- R - 1 . Wy x P
values I ‘Q , as pointed out by Sedsv” 7, and the particle velmmtxe-ﬂ Sl

marked increase near the edge of the gavx,, .

Th# problem of obiaining solutions when 4 iv included as an independ-

ent variable is considerably more difficult, The basic equations are‘partiél

differential equations and, as pointed out in Referencn 13, they ars of mixed
character, coviaining both elliptic and hyperbolic regions, Furthvswmére,

they must meet a zero-pressure boundary condition along a line ”nm\‘SP loca,u- !

tion is unknown in advance. To make matters worse; the differdmtial equa.twns

contain a parameter /‘/ whose vaiue is unspecified. No attempt has been

made to solve these equations; instead, partial solutions are sovght by restrict-
ing attention to ¢anditions along the axis of symuetry. Iu this way we can learrn

a greét deal about the solution with relatively little effort, Along the axis of
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ss__mimetry ’
.5:-.-,0', o¢N¢1 C e=T , 0N ¢@

. the szmllanty equations take Lhe form -

(4>—YL)~P (4 5 4—2%) @
. f.»f-'zﬁ’:c;w.(qs-n),.«pf cEa0 0)

Y 0 R B 1)

¥ 5

- where primes indicate ‘-ordmary derwatwes with respect t;o’ }? ) anci where the
qu‘antit‘y t-(v{j is given by , ‘ .
’ ST RV SUIRN . S 4
wlr) = 2. 55 (00 0 - 52
" (The factot 2 or1gma.tes from ‘the contnbutmn of the term ) C&t e )
Except for the presence of T in Eq. (49), t‘hese are 1éemxca.1 wﬁh the Taylor
equat1ons for a sphencally symmetrxc dxsturbance, dls»usse& abfave. .'The

function 't:' . represents the influence of Z}Sf*-aXl& ‘conditi Qns, as must be
N)- Tep ; ‘

expect -a whenever a partial differential equation is specjalized to a smglp

‘j - ‘line in the plane of its indepden&ent‘mriables; fl‘he ﬁ;mmiax«; conditions at the
~ shock are . , o . .
b - ) ) {{ e ey f+ ‘ ] - - § ’
: , l f R = {i = O {53
_ ; 43( ) ‘{H ¢/{ 3 } { ‘)
i Equatmns {49) to (‘51) may be solved exnhc\\ty for the derwatwes in
. the form~ ~ . -,j 1=n
, . ,,(cﬁ‘) ”—’—‘E;.w +2 I“‘J ‘P‘?S(@*”Q
‘ o 1 ,
: W= - -~ {54)

: : B o V, (‘?”'Vl)[v(‘fb*vu) y{/\\ :l

[
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B S Y/SUAR ¢4 I 4 RPN S ,
’,,43/"—27 /\!qS ) ‘1"("( »*l) Ny R
| (¢-0)" - 7”{/4) ‘

4 , z 4 |
. f= : = T t-:;‘i:’*', — .- (56}

These obviously Have a s"in-gularitylat the point where the de;noﬁ;lina‘.tor '

vanishes. ThlS quant1ty is the specw.l case, for W = 0, of the Iunctlon oo
-dISCuSSGd in Reference 13, whose sxgn determmes whether the nartxal d1ffere’n~—
tial equatmns (19), (21}, (39), have elliptic or hyperbohc character. The pomt
on the axis of symme&ry where the denommator chdnges sign corresponds to the

" intersection of this line with the axis. In Drder tha.t thv solutxon may pa- 5

’ sinopthly through this poin;t, the‘ nurrlz‘erator\s in Eqs,A (54) to {56) must also
v‘anish:ﬁthere‘; Reference i3‘point§ out that such a c‘ondit'ior; is achieféd' if the

function

Hix) (¢~n){ Aﬁﬁ__%iz,_%} e

vanishes at the same pomt
The function 7 (71) cannot be chosen arbitrarily, Thus the only para- ~

meter tbat can be used to guarantee 3 smooth crossing of the sonic peint is

N and this conmdera’uon forms the ctiterion for the choice of N’ For
each’ , and a spec1f1cat1on of ﬁ‘(“v\,r R N' is chosen so as to promdt, a

continuous transition through the smgularity. Thus N \* 111 in general be a
functxon of }( . lt should be noted in passmg that th1s prob1~9m never comeﬁ

up in the ,spherically—Symmetrlc,- cqnstant-energy case. There the vanishing

/



the shock it begins to decrease. The rate of decrease is faster near £=4+7- |

BLAST-WAVE THEORY OF CRATER FORMATION .

.

of i;he denominator always cqincides’v}ith eithc'r‘t_he o,ri,gi;a rﬂfor Y r( 7), .or
with the edge of the cavity (for ¥ > 7), and the cntire-."c'lew field is elliptic
in that solution. | A |
In 6rder to actually obtain a: smooti; crossihg of the singﬁlarity, Eqs..

(54} to (56) must be solved for v‘arvious values of A (and given X ) until )
such a crossing is found. Before such an integration can be don’e,t ri"{""()
must be s})ecified. However, nec rigorous de’terfnination of Z"(Ytj and with
it h/(b') s 'can be m”acie without solving the fullkpartia‘l} differential equations,
Approximation‘s to A may be found by approximating :’1: .and then intejzgi‘at(
ing~ Egs. {54} to {36). Instead of approximating (" itself}, §ne may instead °
relate ¥ to other physical qga;ltities which ma;r be approximated more‘easily.
In particular, by differentiating Eq. '(21) with respect to g ; and tl;en specializ-
in‘g‘for‘ tige axis of symmetry, one finds |

. 2 . ‘ 2 ) '

—-%‘ :N—“?.’ +-;—_-(¢—wi\)?(+2% +~§:—I + ;‘L{—(": geﬁé(ﬁ,(?):—‘o (59)
from which it is seen that approximations to .the pressure distribution can be

used to generate corresponding approximations to T . This process can be

continued, of course, by taking higher-order derivatives, with respectto & ,

of any of the equations of motion. Each of the resulting expressions will con-

tain at le'astr one unknown function; so the utilify of the nrocedure is dictated

by one's ability to approximate the unknown fynction. For this purpose, Eq.

‘(57) is especially useful, " At the shock, the pressure is uniform, while behind

g—
A

as the influence of thfé vacuum .outside the developing crater makes itself felt.

Qualitatively, the pressure djstribution would be expected to have the appearance

;
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/ =1

Al

2 71; s
YA ~

2 ° . .
The quantity gé;-i (YL/ O) , which is essentially the curvature of these lines )

4

‘ at @ =0, will'be zero.at the shock and will beco me negative with incréaéiﬁg
magnitude as v falls below one, Such considerations suggest the approxima-

tion . )
.2t (n o) =-K (1-n) fin o) 8

where K and a are c’onstants.l Crudely', one may think of this‘approxima-
tion as fitting a cosine vériation to the curves a-b,ove’, with a multipliéativé
function of ¥V introduced in such a way as to guarantee zero cur‘va‘turela‘t .t‘h,e
éhock, o

The constants (X and /( must \;e chesen so as to yield values of T

which are at most of the same order as that of <f> .

Figure 3 shows Vresul‘cs which have been found for the case Q& = 1, and .~

K =10. For a given value of: ‘( . and selected values of. /~/ , the equations
are integrated by a Runée-Kutta procedure, starting froﬁu, thé shock vaiueé
given in Eq. (53). A s;mooth cros sing of the singulérity is achieved with the ”

. value /\/ = ,375, and the distributions of Qe,nsity, parfic}g velbcity, 'pre‘S'sur.e
and the _fpn_c:,tion x are\shown in t}}é figuref‘ The results,giveh h‘efe are 'typi_c‘a,l

of thosc which occur for other values of Y . In addition, some calculations

have been made with K =1, and the results are not far different from those
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sﬁnwn he‘re.f
b L . Ingeneral, itis found that values of N ‘coi‘raspozz_fg’,%hg to.a smooth cross-

| ing nf the singularity are quite .closg te the value £/§that applies for the sym«
metric, coustant-energy so.iution; Furthe:;more ’theﬂ quantity T does not
attain an apprecmhle value until some distance away fro*n ‘73 = i where the
density hae fal'len to 2 low value Thus we raight expect that, near the shuck at
least, thgs& soluitons will not differ greatly rom the constanﬁ-energy solutioy,
'ﬂaislis indeed the ca.sle. Flgure 4’compares the two types of soimxon for { =3
and shomz that, a;ong the rPnterlme at least, the motion of moqt of the mass in-
‘volved is well approsnmated by the solutmn for N = 2/15. One may expect this

| trend to persist even for & > 0, suggesting that tﬁe Tayior ‘solution will in gen;
eral be an excell_eﬁt_ﬂa’pprbximation to the con‘siderab}ywrhoré’—compl}cate&:
asxr;mme_tric:z solution, ‘T};edc{om}‘\"ariel:on shown in this ’f:'igurelis typical of the re-
sults found at other values of ¥y - ‘

. So far as Liast-wave t‘neory is concerned, ‘then, the energy of the projectile :
plays the dominant role, its momentum being of only secondary 1mportance. In
assessing the significanc.e of this finding, it is well to bear in mind three different
flow miodels that might be considered. In addition to the two described above, it
7 is a:lsgx:g: poss;ble, in grinciple,’ tb, find a solution in which provision is made-for v

mass &jection, but which has zero net' momentum:

- 3?\—... . , - -
P+ 0 ' _ symmetric
— ™ model
-

M ]/ ‘
Qur conclusion about the relative ummpoz tance of momentum conservation

1cqu1rcs only that thc first two of these models” gwe nearly identical predic-

, tions. The £act is that we find close 51m11a.1 ity to the correct ﬂow pattern
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\

even for the Taylor solution, in which the momentum varies as a function
of time.
One plausible physical explanation is based on the’ eﬁperimen’cal obser-

vati.fanig‘tha:t targets struck by hypervelocity projectiles often acquire momenta
mahy times tha.f of the projectile, implying tﬁaf the material ejected from the

target must aiso carry several times the prqectde momentum. Thus it

M

appears that xhe momentum of the progectxle itself makes only a mmor contr1-= ‘ /

bution to the aver-—all conservatlon process.
A corrolary of this ctmcluswn is that the cond1t1ons of hypervelomty im-
pact can be mmula,’ced by any experzment which duphcates the energy of t‘le

1nc1dent‘part1c1e, irrespective of whether its momentum is correctly matched.

In particular, any intense source of short-pulse electromagnetic radiation,

such as the output of some currently available lasers, should be capable of pro- |

.I

v1d1ng such a sunulatwn, Such an experimeﬁtal technique appears tc; ‘hold
prom1se, and the basis for 1t is discussed in some deta.11 in the Appendtx.

It is important to keep in mmd that the predominant importance of energy,
as revealed by these solutions, does ‘not necessardy imply that crater volume
will be, s‘cal‘ed by the projectile energy. - Actually, énergy scaling is a feature”

which applies only to the “mate of prépé.gation of the shock wavé itse}tf. A
descrigtion of the v;irilatisn~of crater size with various pafamete’rslgf the_imw
pact‘pro;:essmequire»s that the solution forﬁ ‘shock I:Eidil;..-‘i be com;erted imxto a -
rprediction o"f crater’s‘iz'e. Whether the final result of such a pro;:ess (whiéh
presumably will call mater1a1 strepgth into play) will still be ocaled by the

energy of the process, is a questlon that is unresolvq,d at thls pcvmt,

" As a final word of caution, it must be emphasized that our present data

u

v e

3 o
g
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concerning the unimportance nf momentum conservation are restricted to
‘t'n.e wirrilarity, or strong-shock timit., It remains to be determined whether
the same resulis wiii 3e found at lower pressures, where the nonsimilar
natyre of the problen: must be considered,

in t'?.tr next taxu Sections, we restrigt our attention to solutirns in which
onlv the energy is copserved., Thus, the solutions are spherically symmetric.
Thuse sgiutiuné are used to develop an expression for the rate of shock prop- B

ugation as a function of the kinetic energy of the impacting particle,
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5. TAYLOR SOLI;T‘E{’ION Ff)ﬁ SHOCK PROPAGATION

This Section reviews the well-known solution ftn;r a sphericai blast
wave in a perfect gas, in order to provide a background for the quasi-
steady smungn presenrea in the next section., By using \’me constani-energy
distributic;hs of pre ssure, denéity, and partif:le velocity described in the
‘sectwn above, °n exphclt descrlptxon of the shock propagatmn can now he
given if the total energy E of the system is specified.. The sum of the
ibternal and kinetic energy of the fluid set into motion is given bv the intergral

over a hemisphere

e /'@s ' s /
| {-(e+-2';_-u.")27r‘/’fzdr -=£ (-—;—,%kaé—u.)&rﬁf"df
. | (59)
= 2rp B R T,0)
where ‘
T, (v) f( £+ qb)\P?z"ab( O (60)

This integral has been evaluated for the values of ¥ mentioned above, by.
suﬁstitutir}g in Eq; (60) the analyt{cal solution. The results are shown in
Figure §, | v

If the total energy E 1is now specified, a sirnple differeﬁtial equation

for E.(t) tesults
s 3 s 2 ' ) ’ ‘
E=2wp & K LY ~(61)
The term 2wp, ,253 is three times the target mass processed up to the

time 4'!': . Thus, 3 'l«“, (¥) may be thought of as a dimens‘ivonless coefficient

. . .2,
giving the ratio of the mass-~averaged value of “€+~3;,;¢Lz’ to the quantity Ky ,

N
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10 eo IiS
E/2-p o
/3 o s @""Ji‘f)nvﬁ
3T, () = — = (S, (62)
TZ! fs
Since f;’-' is proportional to the energy at the shock
Z (¥ ‘)" ' | '
* - +‘ 1 ?_) : 14721\
R, = ) (e+2_w o - 193]
we obtain
. . ' A o ‘ L

Because most of the mass is concentrated neav the shock, the mass-averaged
value of any quantity is v%sry nearly its val;xe: ;;Lt the shock. Thus the factor
4/3(\( “\;* . is a good approximation to I, as shown in Figure 5 This
factor originates from Eq, (b3), which states that, the larger the value of

Y tﬁe larger must be the shock speed if a given energy pe’r unit mass is
to be achieved behind the shock., We may attach the same significahce ta I”,(f)
if a givén energy is to be distributed in two materials for which, iixe ‘(:o‘ differ,
the shock speed will have to be greater in the rﬁaterial having the larger 2(

The solution of Eq, (61) is the classical Taylor solution for a strong -

blas;t wave
CoWe
, e .
8r I, (¥) /00' o

Here the influence of \5/ is shown more clearly, - For a given £ and /x% s

the shock radius will grow mozre rooidly for large values of 3/

- {
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To apply Eq. (65) to a given case,. @ total energy (. and the valué’
of the parameter ¥ must be specified, "m"all the applications madé below,
this energy is'taken to be the kinetic energy of the impacting particle, The
value of 2)/ is associated with the magnitude of the Gruneisen factor, [ ,
and inence it would be expected to lie in the range from, say, 2 to 3, Values
even larger than this might be considered, especially in the range where
the function A@) is too large to be neglected. Reference 13 makes
application to problems in which ¥ is chosen to be as large as 20, in an

effort to match the full Mie-Grineisen equation.



BLAST-WAVE THEORY OF CRATER FORMATION

6, QUASI-STEADY SOLUTION FOR SHOCK PROPAGATION

The similarity solution described above will be valid only in the limit
of extremely high pressure, where the density ratio across the shock is
constant. In an actual impact, however, such-a condition is not met, espe-
cially during the later stages of the cratering process, when the shock
strength begins'tc‘) decay toward that of a stress wave.

Thus'a proper description of shock propagation iﬁ real materials calls
for an analysis in which the *fmnsimilar features of the problem are correctly
accounted for. Analyses of this sort have been done for gases, with varying
degrees of approximation. Notable among’these is the perturb::tion method,

explored by Sakuraizo, among others. Applied to the present problem, the

© perturbation analysis would see¢k the first-order departure from similarity,

for the case where A(P) is small, but not negligible, compared with ’éﬁ///Ar‘(f) .
A more powerful approach; valid over a wider range of pressure, has been
developed by Oshirnam, who calis it the "Quasi-Simila;ity" solution., 'l‘he’
essence of his method is to solve the proble.n for a range of values of the
shock Mzch number M , dafined as és/t » where ¢ denotes the torget
sound speed. For eack value o M , the correct boundary values are used

at the shock, and certain terms are included in the differential equations to
approximate the nonsimilar effect. The anaiysis leads to a soluticen for the
shock Mach number as a function of time, starting from the blast-wave limit
(M= co ) ‘;md tending toward the acoustic limit { M = 1) at large timne, At
each instant, the distributions of pressure, density, etc., arc given, once

the shock Mach number is known, For air, Oshima's solution agrees well with

experimental observation and with machine solutions, both in regard to the
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- ~ shock propagation, and to the dwtrxbutioﬁé behind the shock. - R -

i

Mg T

ey
N

L A

.

s

Oshima's rnethod is bemg appli=d to the propagati“oh\ of shock waves

in solid media, but the resulis are incomplete, As an interim solution, we

" have worked out an analogous, but more approximate description of the

sh;ck pzrqpagation, which we shall identify by éhe t;rm "Quasi~Steady. " We
assume that the distributions of pressure, Aden sity,: etcs, at any shock speed>

are the same as the self- simiiar,: perfect-gas distrvibutirons whicﬁ woul;l have \
the sarﬁe vélues‘at_: tﬁe shock, ‘Thus, | at the instant when tixe shiock speed is | .
such as to cx;éate a denéi;:y ratio at the shoék of 1. 5 the solution 'is assui’ned o 5
to be the self-sn;ndar solutwn for {”/"—I =5 when /Dé) 1.4, fhe solutlon

is assumed to be that for ‘o/ = 6, etc. Thus the right values at the shock are

always used (as is the case in Oshura s work), but the d1str1butlons behmd

.7 the shock are not correct. However, the quas1 s1m11ar d1str1butxons for air

at moderate shock Mach number s show a quahtatwe yesemblance to the’ present

resx}ltsls for ¥ in the ra,nge from 2 to 20, Thus, because most of the mass

is concé“ntrat'é'd near’ the sho_ck, we may expect the;quasi-stealdy golution .to-

 be a useful apprommatlon.

The startmg point for the analys1s is the enerfy- balance integr a1
o Zvr/’oE fc’ “",(v) ' o (66}

In a similarity solution, 1( i taken to be a constant related to the Grunelsen‘

factor, We HOW propose to allow 2{ to vary, so as to match conditions at the

shock at each mstcmt This is very simple for P large numher of matermlg,
whoseﬁugoniots are well apprdkima.téd over a wide r.aingell by - ‘ L

(tés =‘ c + Su' ’ [ . N . . e
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For such a matérial, ¥ is related to the shock speed by

/%’/;’@'H - (as- s)~——+l _

N {= f/ - t % : o o (68)
_ : ‘ \ -3 . © i
’ fe - - »
Use of this;‘in Eq. (66) leads to asimplerelation betwéeﬁ shock speéd\ and
shock radius. .Defining a length scale Kk, by A o 5
R = & _\? , (69)
e 2o c L 4
‘ equatmn (66) can be rewntten in the d1mens1omess form
; Vs - - . _
s - o o (70)

7&

BT =[5

Figure 6 shows this relation’for § =-1.2, 1.5, and 2. 0. Itis important to’

note that the shock épé’ed,a};proac.hes‘ -C ‘wﬂen-‘f?s becomes ‘large, bfe'ca.ﬁ,l'sé :

' Eo =, Y, andI,-»-wO . Thus the quas1 steady solution tends
toward the aroustu;, oz‘r stress- -wave limit, at large time, -Figure 7 shows a
comparison of F‘q, (70) v;ﬁh t‘he expemments of Fraxser and Karpovg. The
exact value of S for the target is pro‘bably somewhere in the ra.nge from L
1.2 to 2y and theoret}ca,l predict,ions for both Values'/ar% shown. The data,;
which he quite clds\e, tog fhg st'x"es,s,—;vva;ve/ velocity, are well predicted by ‘the B

quasx steady, theo ry'

@«

B',r using Eq, (70) to gwe R, as a function of 2. , a simple solution :: ‘

-

1

for the shock trajectory can be found froy the identity L o
| Rl

st _ j T (ﬁs) T (71)

/?o : 2 o é - 'eo ) M . ’ L '
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.

Figure 8 shows tt;is relation for the three values of S rﬁentioned'befqre,.
Larger yalues of § are associated with faster shock propagation, a x;zlahi-é
festation of the same phenomenon as’ that due to ¥ in the i)erfect;gas
éppfokimﬁtiqn, >Also shownzon this figure are the experimental data of

- Eichelberger gmd C}oah.ring6 and of Halperson a;nd Hall? for é. L\}cite target,
as well as-the shaock histories calculated by Bjork for iron striking Tuffz; )
aréd for frgn striking 'iror.ll."- The agreement found here, ’d{re’z' such a wide
rarge of impact condit:ions, indicates that the quasi-steady theory is a
useful apporximation, es_peciélly at ti;.nes; greater than /%/’C - Of course,
in the early stages of the impact pr,m‘:ess‘ before the projectile has been
desj%troyed, the shock propaéatés at a constant speed, It is only after this
early phase that our approximation of an ‘mstantaneous,pointhelease of

energy becomes valid, We may in general expect the measured trajectories

' to begin with a constant-speed phase ()25(4 I/_‘>, followed by a transition to a

power-~law béhavior (f{sw t'J:} R v&;ith N between .40 and 1.0, depending -

- on the duration of the impact phase, This exponent increases toward 1.0

again é.t_—la.rge titne, as the (constant) stress-wave speed is approached.

For c{://,? greater than about 1.0, the eorvelation of Fig. 8 is quite good,
g,

s

although some scatter’is still presién,t. .cre is not enough data, at present,
to determine \wthe)the r this remaining sc/atter"rcp'r,e sents an additionail‘ impact-
" speed depéndenae, or v;zhether.it is simply an effect ot § not pl;operl)} ’ ‘
accounted for by the quasi-steady theory. -The apblication of Oghima's’
method, curre;{tly in brqgress, will &sheci:considerable light on this ciuestioﬁ
by"_properly’accountliné for the influence of the state equation, but there is

obviously a great need for further measurements of shock-wave trajectories,’
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é.;:pecié;lly in rﬂetalf.

It has been obéezzvetlé that the ~ch3rac1;éris‘tic time for shock propaga-
tion in Lucife ‘isrcqnsid‘erably shorter than the tin::é during w}iich\ material
ris ejected from an alumi‘num ér lead target, under identical ixﬁpact conditions,
and the difference is sometimes attributed to the dynamic strength of ‘the
plastic at high strain rate. In this regard, it is interesting to njote in Fig, 8
the close correlation betweén Bj'r.?rk;‘s aalcuﬁatipns iﬂ‘ir‘o_n’ ( S = 1.6) anci
the exﬁerime_ntal observations in Lucite { S 2z .1.5), all at approximately
5 kzﬁ/sec.’ This correlation 'indicates that in both substapces the characteristic
timé for shock i)?opégation is- Qa/c ,, which is actually smaller for metals
than for L{xcite, due to their largef values of gc"' . Assuming that impact-
generated shogk‘ waves /p‘ropagate in essentially the same manner in all meééls,,“
' this correlation would suggest tE.at-the ‘duratién of material ejection may bel/
considera"bly longer than, say, the time required forlt}‘xé s’riogk to degenerate

down to some preassigned fraction of its initial strength. Again, measure-

mente of shock propagation within the target are needed to resolve the question,
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7. METHODS OF CRATER-SIZE PREDIGTION

4

'I‘hé _sticcesé of the above ana,lysi_.s in predicting shock é?o;ﬁagatiuh‘i_sﬁ
quite eﬂéouraging. However, from the viewpoint of spac.ecraft desigﬁ, it |
does not soﬂlve‘ the problem a’th'a_.nd; namely, to predict crater size. To
accomplish such a task, additional /aﬁélysis is negded. It is ,irhporta.nt:tb
under stand "th'a:t every theory of crater formatién cdllltaiﬁs two i;ngre:iientls:
first, a ttieory ‘for predicting }:ht; sh‘ock-Wave ’tir};e histof')'r, and 1l:‘he flow of |
material ’uehii&d it, and second, a criterion for“chloc)sing some ‘point in the
tra:je'ctory as the crater radius. Bj(orl;zl 7, for example, chooses the instant
wheﬁ a stationary region pf zero pressure can be found, and identifies this
region by the appea.r’aﬁca of a distribution of small veIoc'iti‘es, which are ran-
domly oriented. - Other &ﬁ%hfof:s, for example Davids and Huangl‘z, have ’
used diffgreht criteria, and we shali present below some considerations of
still another. - - |

Before doing so, howe\'rer, wé must emphasize 'Ehe Cenfral impprtalﬁce
of the crater-formation criterién. The ccrrelation lshown in Figure 8 may .
be taken as evidence that, so far as shock-wave propagation is concerned
no essentxally new phenomena occur over the :mpact speed range ‘up to
30 km/sec. Thus, a,ny‘ change in the penetration law, compared to its low-

speed behavior, must be accounted for l‘;ijrgely by the criterion used in

*Suﬂx a criterion cannot be applied in conjunction with the present solution,

which never predicts a stationary region. Indeed, there is no mechanism,

except for the influence of extarnal forces, or for very special shock-wave
. interaction patterns, by which an inviscid fluid can be permangntly brought
-to rest., Any analytic solution would predict that the pressurc and particle

velocity tend asymptotically toward zers at large. time, of course, but their

distributions areé always nonzero, continuous, and never display « random

- orientation.

LA
A

-
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- defining the crater radius.

This paper makes no effort to settle the question of how the crater-
formation criterion should be chosen, We wish only to draw attention to
]the fact that its choice is a crucial element in determining the penctration
law, ‘

On thé other hand, we do share with some otﬁer authors the impres-
sion that the material stré;gth must play a role in the crater-formation
criterion. The‘ esta'blisl1ment of a crater of fixed size implies that material
}:gs been brought to rest, and as noted above-there is no mechanism for
accomplishing this feat within the framework of a?l inviscid theory. Thus

it appears that at large time, a transition must be made to a theory which

accounts for the strength of the target. Indeed, the entire hydrodyﬁamic

analysis begins with tne approximation that the motion of any mass element

is controlled by the pressures on its surfaces, while its resistance to shear
deformation can be neglected. Whenever the inviscid theory itself predicts

pressures comparable to or 1éss than the shear strength of the target, the

fundamental approximations are clearly in error. Thus we ought to assign,

as a boundary for application of the hydrodynamic theory, some level of

pressure comparablé with the target strength,

Reference 13 not only adopts such a boundary for-the fluid-dynamic

theory, but actually employs it as a crater-formation criterion. In that

work, the crater radius is assumed te be cqual to the shock radius at the

instant when the pressure behind the shock has decayed to the intrinsic

strength G‘/z,r » G being the dynamic shear modulus. This criterion was

~ used in conjunction with the similarity solution, to deduce a penctration law
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which displaygd ressonable agniaement with experiment,

Now that a move realistic description of the“ shoclk propagation is
available {from the quasi-steady theory outlined above), it is of interest to
investigate the pez:etra,t§en law derived from the same criterion., If we re-

aquire that the pressure generated at the shock be equal to a strength level

» designated for the moment as ED , we find from Eqs: (14) and (67) that

the corresponding shock speed is given by

i N F‘L 1\ - -
Ks 1+ /;* 45 e | (72)
< = 2

- Figure 9 gives the corresponding value of the shock radius, which, by this

criterion, would be taken as the radius of the crater that will ultimately-

develop. Thus, the crater radius also scales with 2,

(73)

{7y po doVENB
Ro= kR, = ( i

4.1 /ao s
/

where \/ .is the impact speed and g is shown in Figure 9., It is obvious
that a large amount, of experimenfal data could be correlated by this formula,

by an empirical choice of the strength level £ . Infact, by choosing

b= (/2’“0 /"c)é , {where /g;c‘" is in cgs units, and the Brinell hardness &
is measured in the customary umtb of kllograms force per square rmillimeter),
the penetratio’n law recommended by I?:ichelberger and Gehring6 is recovered.
Fiéure 10 shows a typical ‘c‘.orrelation, for aluminum projectiles striking ;:opper
targets. The parameter j¢ has been chosen by matclﬁng the data ‘

at 3.97 km/scc.

It is interesting to note that ;Q = 4,85, which, according to Figure 6 (with

S = 1.54) means that the shock was traveling at approximately 1,3 times
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the stress-wave speed when it pasged the pouition corresponding to ,ec, .
While these results a‘re encouragi'rxg, they nevertheless contain an
ernpirical factor whose significance is not clearly defined at present, Thus,
extrapolations to ﬁighmr iiapact speed cannot be made with confidence. Our
conclusion is that there is a need for an analytical crater-formation criterion
whose accuracy is comparable with that of the present quasi-steady (and of
the forthcoming quasi-similar) solution. We feel that the target strength will

play a role in this nriterion, but that considerable work remains to be done.



BLAST-WAVE THEORY OF CRATER FORMATION
CONCLUDING REMARKS

Our goal in this rescarch has beon an analytic description of hyper-
veloeily ilanset. To this end, the appreximations of blast-wave theory have
een 7oneoved 1o determine how well they apply to the problem of shock-
wacce prey cation in solid targets.  Most of the literature of blast-wave theory
Aais w0t Uie e etrie prablom of 2 point release of energy in a gas, To
agapt the v oeralitical methods to the present problem, then, modifications
Fre roye.rTos in two areas: first, two spatial coordinates must be considered,
and ¢+ ondly, the cquation of stﬁtn appropriate to a solid must be used.

SG}utiO:_&s which allow for spatial variations in two directions have been
found to ¢ very close o the corresponding one-dimensional solutions in all
important respects, Thu.,, the energy transferred by the impacting projectile
is the dominant parameter, its momentum playing a minor role. Predictions
of shock-wave trajectories hased on this concept display excellent agreement
with experiment,

The second area in which modifications of the classical blast -wave
theory arce needed is more sipnificant. The nature of the state equation of
solid miterials, together with the fact that relatively weaker stages of shock
propagation are of interest in this problem, make the assumption of similarity
a weak one, Thusg, shock propagation in solids is characteristically non-
signilar, in contrast to the ‘situation nornially encountered in gases, Yo
~ccount for this feature properly, analytical metﬁods for treating nonsimilar
problems must be used. Fortunately, the required methods ave available,
and -~ .¢ at present being adapted to this problem, As an interim solution, a

crude approximation can be constructed from the similarity solutions

themselves,

Pt



the shock-propagation theory, ’ : ' “

BLAST-WAVE THEORY OF CRATER FORMATION oo

This ébluti;un, referred to here by the t»erm’“ﬂuas_i';Ste’a&y, ' shows re- -

markable agreement with the limited ghock-Wave traj é’rctoz‘gr data available

at’prese'nt.' :Da'ca ‘of this sort are the only ‘s\md that can serve as an un- .

equivocal check on a hydro_dynamical theoryf Corr{parisons with final crater

dim—e‘nsions invélve other aspecté‘of the theory, especially the ci’iteridn

used to define cra,ter' cuze, and are consequently not b\utable as a check on -
Ultimately, the practical goal of all resea1 ch"m th1s area is to establish

the penetration law, espemally in the h1gh~speed reglme which is experiment-

ally inaccessible at the present time. From this 'point of view, the most im-

. portant aspe&ﬁ of these studies has been to reveal the pivotal im=ortance of

the crater-formation criterion:on thepenetratinn 1avv.' ’I‘he currently available

ev1dence quggests that 1mpact generated shock propaga.twn is essenhalhf the

isame over the speed range from 4, 6 to 30 km/sec Thus, any difference in
penetration law is felt to omgmate-from the cvater-formation criterion.. The L
p;é{sent w;;rlc makes no effort-,to egtablish whaJt this criterion should be, fchoﬁgh

i't is felf that ;1t should be related té)’ the strength of the targét. As an example

of such a crmtemo v, a smnple choice related to the pressure being generated

at the shock is shown to provxde basis for correlatmg a large amount of-

. data,. "these results are encouraging, but still contam an element of arbirari-

ness, and fhe1r extenswn to the hwhet 1mpa<.t speed runge requires the

development of a more satwfactory cr1t91~ .,

L
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- " BLAST-WAVE THEORY OF CRATER FORMATION -

S , APPENDIX - ,
SIMULATION OF METEORQID IMPACT BY ENERGY RELEASE"

A major conclusion reached abiove is that crater forimation is controlied
the‘ﬂy by tha gﬁgrg}o of the imp_arﬁng gzartir_’&é: its rnompnfum nia ing only a
secondary role. Tuus we may 28zedt 1o simulate hyvpervelocity impact by any

experiment il xz:hich a strung 5% s »ave i 4Niven inty a target by the deposition

of erergy in any forr:,

It is of central smosrrawce o [, os. teing any simulation of thi“.s .typeg

to be certain thak the 1o 9e o erat,., Jezvoeliun ooes in fact drive a s\trong

shock wave into the $&rges. Ko snso 7="Ur o thrs guestion below, but for
the moment we assume 03 1ois w- e oo DES Leen achieved, and p}:‘esent the
results that follow as a conssgience.

«
2

The severny of a high-speed partisle smpact may be judged by the*

strength of the shock wave dm ven into the target. Knowing the Hugoniot data

.t

for'the target and projer:tile, it is pos sible te solve for the shock strength us

a function of the impact speed. For the case of energy deposition by some'

other means, we must now identify the parameters which determine the initial

shock strength. The ‘quantity that does this is the power being absorbed by the

target, per unitarea in the plane of the shock. To see why this is so, consider.

" a plane shock wave of unit area advancing at speed e into a medium of
. : s

o

The fact that such a sl :nulatlon is posmble was fu’st pomted out to the authors.
by Dr. ¥ rankhn K. Moore, :

7
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‘achieved shock waves of strength equivalent to 4 x 107

'BLAST-WAVE THEORY OF CRATER FORMATION

Pl é." ’ J73 /o) ?6) '?..Q
7 N ¥°5 R
. Uy = O
L w8 -
| In unit time, this shock paoeswses an amount of mass given by fols dt , per

unit area, and ruises 1.1l U #RETRY {per unit mass)

' 4. 7
O, e | o /
t}s \%7: {K ¢ lP 4,)

Thus the rate of energy acquisition by the material behind the shock, ;'zer unit

-

time and area, is - - P E N

S pow-er/are‘a //){;{,s i_. ( '00//3> L /ap %,

'Zfa

The strength of any shock wave may tﬁerefo:re be characterized by the’ amount

. of power per unit area whlch it delivers to the medium through whmh 1t

travels. The Hugomot curve for iron is mterprefed in thls hght in Figure 11,

where it.is. seen that weak shock waves | /040 T 1. 3) mlpart about 1010

waﬂ:ts,/cm2 while extremely sfrong shocks (/f/p 3) tranajer to the medium
L

~some 1013 watts/cmz. These Prders of magnltude are typical of metals. It

is interesting ‘to note that the expemments reported by Altshuler et al23

11

watts/cmz. S

For a given projectile%aﬁ‘get conmbination, there is a one-to-one corre-
spondence between impact speed and the power density at the impact point.

Theif relation is shown in Figure 12 for iron-on-iron. The poiﬁ‘t to be noted

e X%
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is that any experimental technique capdnle of drivi mg shsck waves of strength
greater than li)u‘watt's//cmz can simulate impact conditions which are at

pres e_:nt. beyond the capability of conveutional projection techniques. One
energy source that appears to be suitable for such an application is the Iaser. g
By focusing the beam from such a device, powcer densities of 10413 watts/t:mz,

delivered in less than a microsecond, can be ’deli‘vered24 with existing equip~

ment., The fact that the maximum output of these devices is currently being

improved at such a rapid rate indicates that, even in the presence of losses,

simulation by a laser beam is a promising experimental technique.

The calculations presented in Figure 12 start from the hypothesis that

‘the energy absorption takes place by means of a blast-wave mechanism.

Particularly in the case of electromagnetic energy deposition, this assumption

‘ needs careful scrutiny. There wouid appear to be little doubt that this is the

correct mechamsm when the rate of energy 1nput is suff1C1ent1y high. It is
known that the mechamsm of energy absorption in gases changes, at some
point, from one of linear heat conduction to the nonlinear shock-wave mechan-
ism. I".‘.xactly where such a transition will accur in the case of solid media

is not at present knovm, although it is presumably amenable to theoretical

' analysis. The conclus ons reached above arve based on the assumption that a

shock wave w111 be the correct mechamsm whenever the 1n<~1dent power density

exceeds 1()1,l watts/(:mz.

“The use of such a device was suggested by Mr., A, I-iqrtzberg.
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LIST OF SYMBOLS

Velocity appearing in the relation (¢ = ¢ 45U,

Internal energy per unii mass

Total energy |

Dimensionless pressure, /P/fcﬁf’;'

Dimensionless internal energy ev/é;‘

Integral defined by Equation (60)

Exponent defining rate of shock propagation: /23 e t”'
Pregsure

’I'Uotal momentum

Strength level at which invi'scid solution is terminated
Shock Radius

‘ , \3
Length scale for shock propagation, <E//?,1rl,0°c"}
Spherical coordinates
Entropy per unit mass
Dimensionless parameter in the relation (s = C+ S,
Time after impact

Velocity components in the r- and @-~directions, respectively

Function appearing in Mie~Grineisen state equation

0 .
- Gruneisen factor

Specific~heat ratio in perfect-gas model
Similarity coordinate, r/}?s t)
Dimensionless velocity, “/,és , positive in the direction of

increasing e
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50(/;) Density function in state equation which allows similarity

solution:"
}// Dimensionless density, /’//0o
//> Mass density
T Shear Stress

oy, = 2 e (1,0)

) Dimensionless velocity, ""5{%5 , bositive in the direction of
increasing @
() Evaluated at the shock
s, SH
()M Evaluated before, after, the ghock
3 ,
( )c Denotas cohesive contribution
Cm Evaluated along the Hugoniot
’ o P
() Ordinary derivative, 64«'; &(

L2287



